
WHITE PAPER

Why Agile? And Why it is Not a Silver Bullet

Agile: nimble; able to move quickly and easily
(Webster’s New College Dictionary)

Is agile for you? Is it for your company? In this paper, we
will first summarize agile, and its principles, benefits, and
processes. Then we will review some of the challenges
faced when going agile. Agile is not a magic solution.
There are no silver agile bullets so with anything new, a
frank and objective presentation is essential.

Think about it – you are about to drive from New York
City to San Francisco. Do you:

A – Plan the entire trip, including deciding the exact route
and make hotel reservations for each night, assuming that
you will drive about 700 miles per day? OR

B – Plan the first part of the trip, say between New York
and Pittsburgh? And, worry about the next leg when you
get to western Pennsylvania knowing that there are always
hotels to be found or that your sight-seeing priorities may
change?

The vision in both scenarios remains the same: to get to
San Francisco. But, in the B scenario, you have many
interim goals and you can achieve them individually.

If you chose B, then you may be agile already. You can deal
with “chunks” at a time, and want to see quicker feedback
and results. You want to be a bit flexible in case your
plans change. You don’t want to wait for one big event.
If you chose A, then your initial agile experience may
challenge your assumptions about your own behavior and
perspective of achievements.

WHAT IS AGILE?

What have you heard about agile? Have you heard
anything that concerns you? If you were asked if your
organization should use an agile process, what would your
response be?

First, some thoughts from Dilbert about agile preconceptions:

Why Agile White Paper I Page 1 of 7

Why Agile? And Why it is Not a Silver Bullet WHITE PAPER

Why Agile White Paper I Page 2 of 7

Agile may be a straightforward concept, but everything
about it is different as compared with the traditional
approach to software development. “What do we need
to build?” is still the hardest and most challenging
problem faced by all software development teams.
“When will you be done?” is equally challenging. But
requirements, development, and project management in
an agile world is fundamentally different.

Many companies have been trying to determine the
best and most efficient way to develop software. As
applications / systems / software products have become
larger and more complex, the challenge to deliver
on time has also become harder. Organizations are
experimenting with project management offices (PMOs),
eliminating project managers, asking business analysts
to play a dual role, and other variations in an effort to
deliver faster.

Many have felt that the effort of documenting complete
requirements, prior to beginning development, was
inefficient. After all, no one user knew all the details
of what they wanted, business priorities more often
than not changed during development, and the length
of time it took to gather and document complete
requirements was becoming longer and longer.

Past wisdom proposed that the longer we spent on
analyzing requirements, the less time we needed to
spend on development and testing, the less time we
needed to spend on managing change. Unfortunately
this never became the reality.

In the last 10 years or so, many in IT and software
engineering advocated that a more agile and “leaner”
approach to software development – still focused
on defining “what to build” – was necessary. The
agile method is now a significant factor in software
development, challenging many of the assumptions that
had been held sacred in traditional methodologies.

Iterative, spiral, and RAD (rapid application
development from James Martin) methodologies were
early precursors to the agile process. They attempted to
move away from the heavy reliance on the requirements
specification / waterfall approach. Agile has challenged
many other practices included in project management
and testing methods.

Agile software development methodologies arose out of
the recognition that the development process needed
to be more adept at delivering value faster, and without
the overhead of anticipating and documenting all
the requirements up front. In 2001, many of those
involved with exploring different methods – scrum,
extreme programming (XP), RUP, lean – documented
their beliefs in an Agile Manifesto and set the scene for
identifying the principles for creating software

THE AGILE PRINCIPLES
Early agile adapters reminded us of the success many
manufacturing companies enjoyed using lean (or just-
in-time) processes to improve return on investment,
and deliver value as early in the product development
process as possible.

The seven agile principles of software development,
introduced by Mary Poppendieck, are based on 1990’s
Japanese automobile manufacturing practices. They are
now a proven set of principles that organizations can use
to adapt lean tools and techniques to their own software
development efforts. (Poppendieck, 2006)

1. Eliminate waste

▪ Remove non-value added “things” and processes

▪ First recognize waste, then eliminate it!
- Requirements change “churn”
- Test and fix cycles
- Extra or low priority features – users asking for too

many requirements for fear of not getting anything
of value at all

- Keep the code and the architecture simple

2. Build quality in

▪ Incorporate testing strategies to find defects early and
fast

▪ Perform continuous system integration

3. Create (product) knowledge

▪ Create daily builds for rapid feedback from the test
team

▪ Release early and frequently to elicit customer
feedback

Why Agile? And Why it is Not a Silver Bullet WHITE PAPER

Why Agile White Paper I Page 3 of 7

▪ Hold demos and retrospectives to solidify product
knowledge

4. Defer commitment

▪ Take irreversible decisions at the last minute when most
information is available

▪ Planning is essential / but be flexible with the plan

5. Deliver fast

▪ Focus on providing value as soon as possible, even if it is
piecemeal rather than in a “big bang” release

▪ Delivering fast eliminates waste (as waste costs money)
and provides a competitive advantage

▪ Make faster decisions through empowered teams

▪ Continuous process improvement via the agile
“retrospective” will help deliver faster in the next
iteration

6. Respect people

▪ There is no “one best way” to do things

▪ Do what’s right for the context of the iteration /
product

▪ Ask the team for suggestions / empower them to make
decisions

7. Optimize the whole

▪ See the end-to-end system and make it better, not just
parts of it

▪ Take a “big picture” approach – see the forest through
the trees

AGILE BENEFITS
Now we will take each agile principle and express it as a
benefit. The value to our organization will become readily
apparent.

▪ Agile adds business value more quickly because
development and implementation is done in iterations.
New “chunks” of functionality can be available to users
faster and more frequently. Return on investment can
be achieved more quickly.

▪ Agile creates better products by focusing on the
highest value features. More frequent planning and
prioritization allows users to get what they want.
Research has shown that 43% of software features are
never used, and 19% are rarely used. (Chaos Group
Study, 2002)

▪ Agile projects have a higher rate of customer
satisfaction because users are directly involved with
planning and decision making. They provide critical
feedback at key points to ensure what is being built is
what is needed.

▪ Agile can improve team performance because teams
are smaller and collaborative. The agile project
management approach ensures constant communication
and faster, transparent decision making.

▪ Agile minimizes risk as the agile development horizon
is short and users provide more frequent feedback.
Without the need to spec all the requirements in
advance, the cost of change is minimal.

Beware, there are no silver bullets. Agile projects won’t
necessarily need fewer people to do more. There is no
longer an imposed methodology to hide behind. There
are no longer the excuses of “we need the requirements
spec to start development” or “changing requirements
caused us to deliver late.” Agile exposes poor performing
teams and lack of management buy-in and support that
is often indicative of project failure. But more about this
later.

HOW IS AGILE DIFFERENT?
What does this all mean? And how is agile different?
Many books and web sites document the differences and
details, so the table on the following page is just a
generalized, high-level summary.

Why Agile? And Why it is Not a Silver Bullet WHITE PAPER

Why Agile White Paper I Page 4 of 7

Dimension Traditional Methodologies Agile

Driving force The end product or deliverable. Time is the only driver for the iteration and
release.

Time horizon The time line is as long as the project. Short – typically a few iterations / 2 – 4 months.

Culture Command and control, top down management. Collaborative, empowered, and team based.

Key roles Project manager. Agile project manager (aka scrum master) and
product owner (aka product champion).

Project management Formal and typically driven by weekly meetings
and status report.

Daily and collaborative. Less formal, more visual
reporting.

Requirements
All the project requirements are assumed to be
known.

The requirements take the form of short “user
stories” – focused on one piece of functionality
that can provide value. They are not assumed to
be known in detail.

Documentation
Requirements documentation is written,
complete, and detailed.

User stories are documented on an as needed
basis, based on their priority as determined by the
product owner.

Development Based on the requirements document; develop the
whole.

Collaborative, frequent builds, one iteration at a
time.

Testing
“Hand off” to test. Defects are found late in the
process.

Test driven development – test as you go so that
defects are found quickly, before considerable
development investment is made.

Scope management
A separate and formal project management
process. Sometimes change is viewed as a
negative rather than a positive to meet customer
needs.

Scope change is expected in order to meet
customer needs. Since less is planned, less needs
to be changed after the fact.

REQUIREMENTS IN AN AGILE WORLD
“The hardest single part of building a software system is
deciding precisely what to build.“ (Brooks,1995)

This has not changed in an agile world. Deciding what
to build is still a challenge. Ed Yourdon characterized
software development as a “rock problem.”
(Leffingwell, 2003) A customer asks you to deliver

a rock. But when you actually deliver a rock, the
customer says that what she really wanted was a small,
blue rock. But, it turns out that the customer was
imagining a small, blue marble. Some similarities, but
some critical differences.

Dilbert, as usual, says it very well:

Why Agile White Paper I Page 5 of 7

Why Agile? And Why it is Not a Silver Bullet WHITE PAPER

Requirements in agile are top down and iterative. They
start with a vision, ensconced in an “epic.” Product
features, once identified, are decomposed into “user
stories” that identify small pieces of functionality that are
valued by users. User stories are the requirements.

User stories are written so that functionality is understood
by the entire team – users, designers, developers, and
testers. They are key to ensuring that the solution is
aligned with user expectations. User stories can be
developed in a period of days or weeks, and are short
and easy to read. They are often documented one per
“card” to be managed, tracked, and prioritized. They also
provide value that is easily recognizable to the team, can
be used to estimate the work effort, and are self contained
to support testing and documentation.

User stories are not requirements as we traditionally know
them and they are not the detailed specifications found
in typical requirements documents often taking the form
“the system shall.” They are not a complete portrayal of
an entire system or product. They are not detailed in a
defined phase of a project, but are created in a just-in-time
manner to respond to the iteration demands, business
needs and user priorities.

User stories take the form of:

As a <role> I can <activity> so that <business value>.

▪ Role – who performs the action or receives value from
the activity.

▪ Activity – the action or functionality performed by the
system.

▪ Business value – the value to the business; the “why”
the activity needs to be performed.

PLANNING AND MANAGING IN AN AGILE
WORLD
“Management is the art of getting things done through people.”
(Follett, 1942)

Agile is characterized by:

▪ iterations lasting 2 to 4 weeks based on the scope of
user stories

▪ short planning timeframes – detailed planning is done
one iteration at a time

▪ daily meetings to plan, react and communicate

▪ estimates based on actual performance in pervious
iterations

▪ frequent and required user interaction for feedback

▪ continuous process improvement applied to the next
iteration.

The graphic below illustrates the release planning and
iteration planning efforts. As can be seen, user stories
form the critical input into each iteration. It is still about
what to build! The demo and the retrospective ensure
that users are involved, and knowledge is created.

Why Agile? And Why it is Not a Silver Bullet WHITE PAPER

Why Agile White Paper I Page 6 of 7

AGILE CHALLENGES
Agile is a big change; agile is a culture change; agile
is a paradigm shift. Each of the key stakeholders –
management, the “customer,” and the team – face
challenges as agile is introduced. Thes challenges are
listed here not to scare you off, but to make you aware
of the realities of change.

Management & Organizational Challenges
Lack of executive support – management must
understand and support the significant cultural and
organizational changes that agile brings:

▪ time based “mini-projects”

▪ shorter horizon for project planning and
commitment

▪ localized decision making

▪ “good enough” documentation

▪ informal but visible status reporting

Organizational problems – agile cannot solve strategic,
operational or structural problems. Agile requires
team work, quick and frequent decision making, and
clear priorities in the short to medium term. Agile can
expose these shortcomings, but will fail if they are not
addressed.

The “mini-waterfall” (Crisipin & Gregory, 2010)
– organizational culture wants to impose the more
methodical waterfall phases on each iteration, and
expects status reports to reflect the same. This will add
unnecessary overhead and waste.

Project Challenges
The right project – there is considerable debate about
whether agile can be for every project. Some would
say a resounding “yes,” others say that agile only works
for small projects. Careful consideration, planning, and
scoping would be recommended for projects such as
the ones listed below:

▪ Very large, complex, enterprise-wide projects

▪ Infrastructure / systems architecture / data
architecture projects

▪ Projects in which contractor pre-approval of
specifications are required

In many of these projects, once the planning and
analysis is complete, development, testing and
implementation may be able to follow a more agile
approach.

Customer Challenges
Impatience without a road map – management may
ask, “when are you going to be done,” and customers
may ask, “what is the roadmap for next year?” The
horizon in agile becomes more blurry the further out
one looks. The immediate future – say one to two
months looks clear, as if under a microscope. Beyond
that …

Lack of user involvement – the need for users to be
involved with product development has not lessened
since the original 1994 Chaos study indicated that it
was a key success factor. Customers who say “just do
it” or “you know what I mean” will not make an agile
project any more successful than a traditional project.

Vision – the need for a clear product or release vision
has not gone away. The customer still has to be able
and available to help the team understand the business
problem and priorities of the iteration and its user
stories.

Team Challenges
Teams are not empowered – the agile team needs
to be empowered to succeed and must be allowed
to make decisions and move forward with minimal
guidance and leadership from above. They cannot be
micromanaged or hide behind a methodology and its
constraints.

Poor product owner decision making – the product
owner must take responsibility for product direction
and requirements, or there is a risk that the team will
not create the best product. A product owner who
changes focus too often will lead the team to waste
time, waste effort, and delay the release.

Non-performing teams are exposed – if a team is not
performing well, agile will exacerbate the problem.
Agile requires team work, constant communication and
an open and transparent work style. Agile cannot solve
team problems.

Why Agile White Paper I Page 7 of 7

Why Agile? And Why it is Not a Silver Bullet WHITE PAPER

SO - WHAT TO DO?
Challenge assumptions. (Leffingwell, 2007) Challenge
the “but that’s the way we’ve always done it.” Challenge
the fact that requirements must not change once signed
off. Challenge testing practices. Challenge the invisible
walls and barriers created by the more traditional
development process. Embrace change. Agile creates
a whole new set of assumptions in order to deliver the
promised benefits. Dream big, but deliver small things,
more frequently, and on time and within budget.

REFRENCES

▪ Brooks, James F. (1995) The Mythical Man-Month
Anniversary Edition. (Originially published in 1975).
New York: Addison-Wesley

▪ Cohn, Mike (2004) User Stories Applied: For Agile
Software Development. Boston, MA: Addison Wesley.

▪ Crispin, Lisa & Gregory, Janet (2010) Agile Projects:
6 Ways to Avoid the “Mini-Waterfall”. Software Test &
Performance, January 2010

▪ Leffingwell, Dean & Widrig, Don (2003) Managing
Software Requirements. New York: Addison-Wesley.

▪ Leffingwell, Dean (2007) Scaling Software Agility. New
York: Addison-Wesley.

▪ Metcalf, H. & Urwick, L.F. editors (1942) Dynamic
Administration: The Collected Papers of May Parker Follett.
New York: Harper & Row,

▪ Poppendieck, Mary & Poppendieck, Tom (2006)
Implementing Lean Software Development – From Concept to
Cash. New York: Addison Wesley

▪ http://www.agilemanifesto.org/

Tel 800-747-9783 Fax 303-756-2211 www.systemation.com
©2019 Systemation All Rights Reserved. Information subject to change without notice.

